
The burgeoning field of stretchable electronics promises to change the way we think about gadgets. Silicon chips, once confined to flat, rigid shapes, will break out of the planar mold. One experimental example is a camera, modeled after an eyeball, that features a curved array of light sensors.
Now a new design gives this curved camera a boost: the shape of the lens and of its sensor can be changed in synchrony, providing a 3.5x zoom. This provides a key piece of missing functionality for the original camera concept, says John Rogers, professor of materials science and engineering at the University of Illinois, Urbana-Champaign. Rogers led the development of the device. "The result is a complete camera system, with tunable lens and tunable detector, capable of taking pictures," he says. Rogers and his coauthors published details of the work on Monday in the
Proceedings of the National Academy of Sciences.
A camera with curved sensors—analogous to the curved retina of the eye—has certain advantages over one with a flat sensor. Its field of view is wider, and overall the device can be simpler and more compact. Possible applications include cameras for surveillance, phones, endoscopic imaging, or even tiny video cameras embedded in football helmets, says Yonggang Huang, coauthor and engineering professor at Northwestern University.